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Blending two Ball B-Spline Curves(BBSC) is an important tool in modeling tubular objects. In this paper, we

propose a new BBSC blending method. Our method has the following three main contributions: First, we use

BBSC instead of ball Bézier to model the blending part to expand the solution space and make the resultant

BBSC have better fairness. Second, we consider both the skeleton line and radius of BBSC, which makes the

skeleton line and radius consistent. Thirdly, we propose a two-step optimization process to solve the problem

of excessive amount of parameters brought by expanding the solution space, so that our method satisfies the

real-time.
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1 INTRODUCTION
Ball B-Spline Curve (BBSC) is a method for modeling free tubular objects based on skeleton

lines[Seah 2007; Seah and Wu 2005]. In BBSC, control balls are used instead of control points, and

radii are added to the B-Spline curves, thus enabling a good representation of free tubular objects.

BBSC is a solid representation model that can represent any point inside an object, and in addition,

due to its self-contained skeleton line property, it avoids the difficult task of skeleton line extraction

in the solid model processing.

Curve blending is an important task in computer-aided design(CAD). The problem is as follows:

given curves 𝐶1 and 𝐶2 are blended into the same curve, keeping the original part of the curve

unchanged and the resulting curve continuous everywhere. Fig.1 shows an example of BBSC

blending task. There are two types of current curve blending methods: the first type only models

the blending curve without solving for the optimal curve, and obtains the final blending curve

results by providing user-adjustable parameters[Hartmann 2001; Yawen 2011]. This type of method

provides the user with a high degree of freedom, but the parameter adjustment is often not intuitive,

and it is difficult for the user to get the optimal blending curve results. Another type of method
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2 Zhao et al.

(a) Input ball B-Spline curves(BBSCs). (b) Result ball B-Spline curve after

blending.

Fig. 1. An example of ball B-Spline curve(BBSC) blending task. Blending the input BBSCs by adding a new
BBSC and maintain 𝐺2 continuity at their junctions.

solves the optimal curve, but reduces the difficulty of solving the problem by reducing the curve

degrees of freedom or by using only a single-segment Bezier curve in a limited solution space

for optimal curve solving[Belkhatir et al. 2008; Liu1 et al. 2009] This type of method limits the

solution space of the optimal curve, and the fairness of the obtained blending curve is often not

good enough.

For the blending problem of BBSC, Jiang considers BBSC as two parts, skeleton line and radius,

and blends the two parts separately[Jiang et al. 2014]. In the skeleton line blending, the method of

Yongjin Liu is borrowed[Liu1 et al. 2009], and the skeleton line blending is carried out using the

extension-based approach, and the energy function is optimized for minimization. In the radius

blending, the strain energy of the radius function is minimized to obtain the optimal control ball

radius taking value. This method has two problems: firstly, the skeleton line blending based on

extending is essentially a single-segment Bezier curve for modeling the blending curve, and the

solution space is limited; secondly, optimizing the skeleton line and radius separately makes the

skeleton line and radius unable to maintain consistency, and the overall fairness of BBSC is poor.

Our main contributions are as follows:

1. We use ball B-Spline instead of ball Bezier as the modeling method for the blending part. Using

multi-segment polynomial instead of single-segment polynomial, we obtain a larger solution space

and achieve results with better fairness.

2. We consider both skeleton line and radius, the control ball is considered as a point in the

4-dimensional space, which is involved in the blending process at the same time. Compared with

considering the skeleton line and radius separately, our method can be optimized in the same space

to obtain the consistency of the control ball position and radius.

3. We propose a two-step optimization process to reduce the complexity of the optimization

problem. Compared with the Ball Bezier curve, the modeling of the Ball B-Spline Curve as a

blending part introduces more parameters. In order to avoid the optimization difficulties caused

by the excessive amount of parameters, we preprocess all the control balls by the first step and

express them uniformly in the form about the continuity degrees of freedom. Thus, the number

of parameters in the second optimization step is controlled to be constant 4, which avoids the

optimization difficulties caused by the excessive amount of parameters.
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2 RELATEDWORK
In this section, we review Ball B-Spline curves and the existing algorithms for belnding of B-Spline

curves and BBSC.

2.1 Ball B-Spline Curve
Ball B-Spline curve (BBSC) is a skeleton line-based representation of a 3D solid model first proposed

by Seah and Wu in 2005[Seah and Wu 2005]. The definition of BBSC is divided into two parts. The

B-Spline curve defines the skeleton line of the solid model, and the scalar form of a B-Spline curve

defines the radius of each point extending from the skeleton line. Compared with traditional Non-

Uniform Rational B-Splines (NURBS), BBSC can represent curves with thickness. Therefore, BBSC

has a significant advantage when representing tubular solid models. In addition, when representing

the solid model, commonly used methods such as mesh model and point cloud model all need to

store a large amount of data. BBSC only needs to store the coordinates and radius of control balls,

as well as the knot vector. When editing the shape of the geometric model, the model expressed

by using BBSC only needs to manipulate the position and radius of the control balls to complete,

which is both flexible and convenient. With these excellent properties, BBSC is now widely used in

realistic models of natural objects, such as 3D trees[Wu, Zhou, and Wang 2009; Wu, Zhou, Wang,

et al. 2006], realistic rendering of flowering rape[L. Zhao et al. 2011], and 3D modeling of other

plants [Tang et al. 2009; Zhu et al. 2008]. In the field of medical imaging, BBSC can be applied to

the reconstruction and repair of cerebral vascular models[Wang, E. Liu, et al. 2016; Wang, Wu, et al.

2016; S. Zhao et al. 2010]. In 3D animation production and game development, BBSC is also useful

in rapid 3D character modeling[Xu et al. 2011] and real-time animation rendering[Ao et al. 2009].

2.2 Blending of B-Spline Curve and BBSC
The problem of blending of B-Spline curve is as follows: given curves𝐶1 and𝐶2 are blended into the

same curve, keeping the original part of the curve unchanged and the resulting curve continuous

everywhere.

For the blending problem of B-Spline, many algorithms have been proposed. These methods

can be divided into two kinds: first one only models the blending curve without performing a

parametric solution of the optimal curve. The final curve is determined by providing user-adjustable

parameters. Lu[Yawen 2011] adjusted the shape of the blending curves by changing the parameters

lambda and thumb, ensuring that the blending results satisfy the 𝐺2
continuity condition. Erich

Hartmann[Hartmann 2001] also adjusted the shape of curves by adjusting lambda and thumb,

and the 𝐺2
continuity condition was extended to the 𝐺𝑛

continuity condition. The other class

of methods solves the optimal curve by optimizing the strain energy function. Bachir[Belkhatir

et al. 2008] modeled the blending part and then optimized the solution, but only 𝐺1
continuous is

satisfied. Liu[Liu1 et al. 2009] introduced the extension method to implement the blending task and

optimized it for the strain energy function of the curve.

For the blending problem of BBSC, it is more complex compared with blending problem of

B-Spline curve, and there are fewer related studies. Jiang[Jiang et al. 2014] borrows the idea of Liu’s

method[Liu1 et al. 2009] to achieve the blending of two BBSCs . They solved the blending problem

of BBSCs with the same idea as solving the extension problem of BBSCs, still extending the first

BBSC to three balls by dividing the skeleton line and radius function, and then adjusting the three

control balls at the end of the resultant curve according to the smooth condition with the second

BBSC. Therefore, the problem of solution space limitation is not solved in any of their methods.

Liu[X. Liu et al. 2020] use B-Spline as the model method to solve the curve extending task in order
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4 Zhao et al.

to enlarge the solution space. Liu’s work inspired us how to solve the the problem of solution space

limitation.

3 PRELIMINARIES
Before introducing the method, we briefly introduce Ball B-Spline Curve,𝐺𝑛

Continuity and Matrix

Representation of B-Splines.

3.1 Ball B-Spline Curve
A Ball B-Spline Curve(BBSC) is defined as

⟨B⟩(𝑡) =
𝑛∑︁
𝑖=0

𝑁𝑖,𝑘 (𝑡) ⟨P𝑖 ; 𝑟𝑖⟩ , 𝑡𝑘−1 ≤ 𝑡 ≤ 𝑡𝑙−𝑘+1 (1)

where 𝑁𝑖,𝑘 (𝑡) is the 𝑖 − 𝑡ℎ B-Spline basis function of order 𝑘 with knot vector 𝑡0, ..., 𝑡𝑛+𝑘 , ⟨P𝑖 ; 𝑟𝑖⟩ is a
ball centred at 𝑃𝑖 with radius 𝑟𝑖 .

For a Ball B-Spline curve, it can be derived as follows:

⟨B⟩(𝑡) =
𝑛∑︁
𝑖=0

𝑁𝑖,𝑘 (𝑡) ⟨P𝑖 ; 𝑟𝑖⟩ =
〈

𝑛∑︁
𝑖=0

𝑁𝑖,𝑘 (𝑡)P𝑖 ;
𝑛∑︁
𝑖=0

𝑁𝑖,𝑘 (𝑡)𝑟𝑖

〉
(2)

According to the above equation, it can be found that as a skeleton line-based solid model, a

BBSC can be viewed as two parts: a B-Spline curve as a skeleton line

∑𝑛
𝑖=0 𝑁𝑖,𝑘 (𝑡)P𝑖 , and a B-Spline

scalar function as a radius function

∑𝑛
𝑖=0 𝑁𝑖,𝑘 (𝑡)𝑟𝑖 .

To facilitate the simultaneous consideration of the skeleton line and radius, we define the ball in

terms of a 4-dimensional vector.

Q𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑟𝑖 ) = ⟨P𝑖 ; 𝑟𝑖⟩ (3)

Then, a BBSC can be re-expressed as

⟨B⟩(𝑡) =
𝑛∑︁
𝑖=0

𝑁𝑖,𝑘 (𝑡)Q𝑖 (4)

3.2 𝐺𝑛 Continuity
In geometry modeling, there are two types of continuity of curves: C-continuity and G-continuity.

C-continuity disallows many parameterizations that generate geometrically smooth curves. G-

continuity requires only that the derivatives of each order are in the same direction on both sides

of a point on the curve. In the blending task, G-continuity is generally chosen as the continuity

condition to give a more flexible expression of the blending curve. For two cubic B-Spline curves c1
and c2, the intersection points are c1 (1) and c2 (0), and the G-continuity condition is

c1 (0) = c2 (1)
c′1 (0) = 𝛼1c′2 (1)
c′′1 (0) = 𝛼2

1
c′′2 (1) + 𝛼2c′2 (1)

...

c(𝑛)
1

(0) = 𝛼𝑛
1
c(𝑛)
2

(1) + · · · + 𝛼𝑛c
(1)
2

(1)

(5)

where 𝛼1 is a positive real number and 𝛼2 ...𝛼𝑛 are arbitrary real numbers.
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(a) Subdivision and skeleton of BBSC.

(b) Rendering result of BBSC.

Fig. 2. Example of BBSC.

In practical applications,𝐺2
continuity can already satisfy the continuity requirement in general,

so this paper mainly discusses the curve blending problem under the𝐺2
continuity condition. For

C1 and C2, the bending curve is B. Then, the expression of the𝐺2
continuity condition is as follows:

B(0) = C1 (1)
B′ (0) = 𝛼1C′

1 (1)
B′′ (0) = 𝛼2

1
C′′

1 (1) + 𝛽1C′
1 (1)

B(1) = C2 (0)
B′ (1) = 𝛼2C′

2 (0)
B′′ (1) = 𝛼2

2
C′′

2 (0) + 𝛽2C′
2 (0)

(6)

3.3 Matrix Representation of B-Splines
The B-Spline basis function is essentially a segmented polynomial with order 𝑘 − 1. When 𝑡 ∈
[𝑡𝑖 , 𝑡𝑖+1), 𝑡𝑖 < 𝑡𝑖+1, there are 𝑘 B-Spline basis functions with order 𝑘 − 1 that are nonzero:

N𝑖−𝑘+1,𝑘 (𝑡),N𝑖−𝑘+2,𝑘 (𝑡), ...,N𝑖,𝑘 (𝑡) (7)

These B-Spline basis functions can be represented in matrix form as follows:

(N𝑖−𝑘+1,𝑘 (𝑢),N𝑖−𝑘+2,𝑘 (𝑢), ...,N𝑖,𝑘 (𝑢)) = (1 𝑢 𝑢2 ... 𝑢𝑘−1)M𝑘 (𝑖) (8)

where 𝑢 is a renormalization of the original parameter 𝑡 , 𝑢 = (𝑡 − 𝑡𝑖 )/(𝑡𝑖+1 − 𝑡𝑖 ), 𝑢 ∈ [0, 1),
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M𝑘 (𝑖) =
©«
N𝑘

0,𝑖−𝑘+1 N𝑘
0,𝑖−𝑘+2 · · · N𝑘

0,𝑖

N𝑘
1,𝑖−𝑘+1 N𝑘

1,𝑖−𝑘+2 · · · N𝑘
1,𝑖

...
... · · ·

...

N𝑘
𝑘−1,𝑖−𝑘+1 N𝑘

𝑘−1,𝑖−𝑘+2 · · · N𝑘
𝑘−1,𝑖

ª®®®®®¬
Let P be the control point. From the local support of the B-Spline curve, it follows that any point

defined on the interval [𝑡𝑖 , 𝑡𝑖+1) can be obtained by the following equation:

B𝑖−𝑘+1 (𝑡) = (N𝑖−𝑘+1,𝑘 (𝑢) N𝑖−𝑘+2,𝑘 (𝑢) ... N𝑖,𝑘 (𝑢)) · (P𝑖−𝑘+1 P𝑖−𝑘+1 ... P𝑖−𝑘+1) (9)

The general form of the B-Spline matrix expression can be obtained as follows:

B𝑖−𝑘+1 (𝑡) = (1 𝑢 𝑢2 ... 𝑢𝑘−1) ·M𝑘 (𝑖) · (P𝑖−𝑘+1 P𝑖−𝑘+1 ... P𝑖−𝑘+1) (10)

M𝑘 (𝑖) is called the coefficient matrix of the B-Spline on the interval [𝑡𝑖 , 𝑡𝑖+1) with order 𝑘 − 1. In

particular, the coefficient matrix of the cubic B-Spline has the following form

©«
(𝑡𝑖+1 )2

(𝑡𝑖+1−𝑡𝑖−1 ) (𝑡𝑖+1−𝑡𝑖−2 ) 1 −𝑚00 −𝑚02

(𝑡𝑖−𝑡𝑖−1 )2
(𝑡𝑖+2−𝑡𝑖−1 )𝑡𝑖+1−𝑡𝑖−1 ) 0

−3𝑚00 3𝑚00 −𝑚12

3(𝑡𝑖+1−𝑡𝑖 ) (𝑡𝑖−𝑡𝑖−1 )
(𝑡𝑖+2−𝑡𝑖−1 ) (𝑡𝑖+1−𝑡𝑖−1 ) 0

3𝑚00 −3𝑚00 −𝑚22

3(𝑡𝑖+𝑡𝑖 )2
(𝑡𝑖+2−𝑡𝑖−1 ) (𝑡𝑖+1−𝑡𝑖−1 ) 0

−𝑚00 𝑚00 −𝑚32 −𝑚33 𝑚32

(𝑡𝑖+1−𝑡𝑖 )2
(𝑡𝑖+3−𝑡𝑖 ) (𝑡𝑖+2−𝑡𝑖 )

ª®®®®®¬
(11)

where𝑚𝑖 𝑗 denotes the element in row 𝑖+1 and column 𝑗+1, and𝑚32 = − 1

3
𝑚22−𝑚33− (𝑡𝑖+1−𝑡𝑖 )2

(𝑡𝑖+2−𝑡𝑖 ) (𝑡𝑖+2−𝑡𝑖−1 ) .

4 PROBLEM FORMULATION
Given two Ball B-Spline curves C1 (𝑡) and C2 (𝑡), our goal is to find a curve B(𝑡) that allows smooth

blending of C1 (𝑡) and C2 (𝑡). 𝐺2
continuity needs to be satisfied at the connection of C1 (𝑡), C2 (𝑡),

and B(𝑡). The strain energy function describes the fairness of B(𝑡). In general, the lower the strain

energy of a BBSC, the greater its fariness and the more natural its appearance. We want to find a

blending curve that minimizes the strain energy while satisfying the condition of 𝐺2
continuity.

Therefore, the blending problem of the B-Spline curve can be viewed as a constrained optimization

problem and described as follows:

minB(𝑡 ) 𝐸𝐺 (B(𝑡))
s.t. B(0) = C1 (1)

B′ (0) = 𝛼1C′
1 (1)

B′′ (0) = 𝛼2

1
C′′

1 (1) + 𝛽1C′
1 (1)

B(1) = C2 (0)
B′ (1) = 𝛼2C′

2 (0)
B′′ (1) = 𝛼2

2
C′′

2 (0) + 𝛽2C′
2 (0)

(12)

In previous work, the blending curve is usually represented by bezier with one polynomial

segment. The𝐺2
continuity at the connection is often given only a limited number of degrees of

freedom. This gives a relatively small solution space for the blending curve, making it likely that the

result of the solution is not the globally optimal blending curve. We use a multisegment polynomial,

i.e., a B-Spline curve, as the expression of the blending curve.

5 STRAIN ENERGY FUNCTION OF BALL B-SPLINE
In this chapter, we present the definition of the strain energy function of BBSC and its discrete

expression based on the control balls.
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5.1 Defination of Strain Energy
The strain energy function of a curve is often used as an indicator of the fairness of the curve. The

strain energy of a curve is defined by the curvature of the curve:

𝐸𝐺 (c(𝑡)) =
∫

1

0

∥c′′ (𝑡)∥2𝑑𝑡 (13)

For BBSC, the strain energy function of BBSC can be defined by borrowing the strain energy

function of a curve. BBSC contains two parts: the skeleton line and the radius. In order to consider

the effects of the skeleton line and radius on the fairnes at the same time, we consider the control

balls as a point in a 4-dimensional Euclidean space and BBSC as a curve in the 4-dimensional space

to define its strain energy function.

𝐸𝐺 (B(𝑡)) =
∫

1

0

∥B′′ (𝑡)∥2𝑑𝑡 =
∫

1

0

 𝑛∑︁
𝑖=0

𝑁 ′′
𝑖,𝑘
(𝑡)Q𝑖

2𝑑𝑡 (14)

We illustrate the validity of the BBSC strain energy function by the following example. We

show three BBSCs, B1 (𝑡),B2 (𝑡),B3 (𝑡), having the same skeleton line and different radius functions.

Among them, B1 (𝑡) and B2 (𝑡) have different control ball radius but their radii are constant and have
no effect on the strain energy function. Whereas, the control ball radius of B3 (𝑡) has a variation,
which has an effect on the strain energy function, so the strain energy value of B3 (𝑡) is greater
than that of B1 (𝑡) and B2 (𝑡). This example shows that the BBSC strain energy function we defined

responds to the degree of bending and fairness of BBSC.

(a) 𝐸𝐺 (B)1 (𝑡 ) = 1412856 (b) 𝐸𝐺 (B)2 (𝑡 ) = 1412856 (c) 𝐸𝐺 (B)3 (𝑡 ) = 1413273

Fig. 3. Strain energy of different BBSCs.

5.2 Discrete Expression by Control Balls
The strain energy function of BBSC is defined based on curvature, which presents computational

difficulties. The entire geometric characteristics of BBSC are completely defined by the control balls

and knot vectors. In this subsection, we convert the continuous expression of the strain energy

function based on the BBSC curvature into a discrete expression of the strain energy function based

on the control balls and knot vectors to facilitate subsequent calculations.

BBSC is a segmented structure. According to the additivity of the integral, the strain energy

function of BSBC can be rewritten in the following form:

𝐸𝐺 (B(𝑡)) =
∫

1

0

∥B′′ (𝑡)∥2𝑑𝑡 =
𝑛∑︁

𝑖=𝑘−1

∫ 𝑡𝑖+1

𝑡𝑖

B′′
𝑖−𝑘+1 (𝑡)

2𝑑𝑡 (15)
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A common method for calculating B-Spline basis functions is the de-Boor-Cox method, and

such an iterative method is too difficult to calculate. We introduce a matrix representation of the

B-Spline to transform the iterative form of the BBSC into a non-iterative form.

B𝑖−𝑘+1 (𝑡) =
(
1

𝑡−𝑡𝑖
𝑡𝑖+1−𝑡𝑖

(𝑡−𝑡𝑖 )2
(𝑡𝑖+1−𝑡𝑖 )2

(𝑡−𝑡𝑖 )3
(𝑡𝑖+1−𝑡𝑖 )3

)
·M4 (𝑖) ·

(
Q𝑖−3 Q𝑖−2 Q𝑖−1 Q𝑖

)
T

(16)

M4 (𝑖)is the core of the B-Spline matrix expression: the coefficient matrix. The second derivative

norm of B𝑖−𝑘+1 (𝑡) can be easily derived in the following matrix representation:

B′′
𝑖−𝑘+1 (𝑡) =

(
0 0

2

(𝑡𝑖+1−𝑡𝑖 )2
6(𝑡−𝑡𝑖 )
(𝑡𝑖+1−𝑡𝑖 )3

)
·M4 (𝑖) ·

(
Q𝑖−3 Q𝑖−2 Q𝑖−1 Q𝑖

)
T

(17)

∥B′′
𝑖−𝑘+1 (𝑡)∥

2 =B′′
𝑖−𝑘+1 (𝑡) · B

′′
𝑖−𝑘+1 (𝑡)

T

=

(
0 0

2

(𝑡𝑖+1−𝑡𝑖 )2
6(𝑡−𝑡𝑖 )
(𝑡𝑖+1−𝑡𝑖 )3

)
· N4 (𝑖) ·

(
Q𝑖−3 Q𝑖−2 Q𝑖−1 Q𝑖

)
T

(18)

N4 (𝑖) can be expressed as follows:

𝑁 4 (𝑖) = 𝑀4 (𝑖) ·
©«
Q𝑖−3 · Q𝑖−3 Q𝑖−3 · Q𝑖−2 Q𝑖−3 · Q𝑖−1 Q𝑖−3 · Q𝑖

Q𝑖−2 · Q𝑖−3 Q𝑖−2 · Q𝑖−2 Q𝑖−2 · Q𝑖−1 Q𝑖−2 · Q𝑖−1
Q𝑖−1 · Q𝑖−3 Q𝑖−1 · Q𝑖−2 Q𝑖−1 · Q𝑖−1 Q𝑖−1 · Q𝑖

Q𝑖 · Q𝑖−3 Q𝑖 · Q𝑖−2 Q𝑖 · Q𝑖−1 Q𝑖 · Q𝑖

ª®®®¬ ·M
4 (𝑖)T (19)

Denoting the elements of N4 (𝑖) as 𝑛𝑖 𝑗 , the polynomial expression of ∥B′′
𝑖−𝑘+1 (𝑡)∥

2
is as follows:B′′

𝑖−𝑘+1 (𝑡)
2 = 4𝑛𝑖

22

(𝑡𝑖+1 − 𝑡𝑖 )4
+
12 (𝑡 − 𝑡𝑖 )

(
𝑛𝑖
23
+ 𝑛𝑖

32

)
(𝑡𝑖+1 − 𝑡𝑖 )5

+
36(𝑡 − 𝑡𝑖 )2𝑛𝑖33
(𝑡𝑖+1 − 𝑡𝑖 )6

(20)

Integrating Eq. (19), the strain energy function can be obtained as follows

𝐸𝐺 (B(𝑡)) =
𝑛∑︁

𝑖=𝑘−1

4𝑛𝑖
22
+ 6

(
𝑛𝑖
23
+ 𝑛𝑖

32

)
+ 12𝑛𝑖

33

(𝑡𝑖+1 − 𝑡𝑖 )3
(21)

Denoting the elements ofM4 (𝑖) as𝑚𝑖 𝑗 , the numerator in Eq. (20) can be derived as follows

4𝑛𝑖
22
+ 6

(
𝑛𝑖
23
+ 𝑛𝑖

32

)
+ 12𝑛𝑖

33

=
(
4𝑚𝑖

20
𝑚𝑖

20
+ 12𝑚𝑖

20
𝑚𝑖

30
+ 12𝑚𝑖

30
𝑚𝑖

30

)
Q𝑖−3 · Q𝑖−3

+
(
8𝑚𝑖

20
𝑚𝑖

21
+ 12𝑚𝑖

30
𝑚𝑖

21
+ 12𝑚𝑖

31
𝑚𝑖

20
+ 24𝑚𝑖

30
𝑚𝑖

31

)
Q𝑖−3 · Q𝑖−2

+
(
8𝑚𝑖

20
𝑚𝑖

22
+ 12𝑚𝑖

30
𝑚𝑖

22
+ 12𝑚𝑖

32
𝑚𝑖

20
+ 24𝑚𝑖

30
𝑚𝑖

32

)
Q𝑖−3 · Q𝑖−1

+
(
8𝑚𝑖

20
𝑚𝑖

23
+ 12𝑚𝑖

30
𝑚𝑖

23
+ 12𝑚𝑖

33
𝑚𝑖

20
+ 24𝑚𝑖

30
𝑚𝑖

33

)
Q𝑖−3 · Q𝑖

+
(
4𝑚𝑖

21
𝑚𝑖

21
+ 12𝑚𝑖

31
𝑚𝑖

21
+ 12𝑚𝑖

31
𝑚𝑖

31

)
Q𝑖−2 · Q𝑖−2

+
(
8𝑚𝑖

21
𝑚𝑖

22
+ 12𝑚𝑖

31
𝑚𝑖

22
+ 12𝑚𝑖

21
𝑚𝑖

32
+ 24𝑚𝑖

31
𝑚𝑖

32

)
Q𝑖−2 · Q𝑖−1

+
(
8𝑚𝑖

21
𝑚𝑖

23
+ 12𝑚𝑖

23
𝑚𝑖

31
+ 12𝑚𝑖

21
𝑚𝑖

33
+ 24𝑚𝑖

31
𝑚𝑖

33

)
Q𝑖−2 · Q𝑖

+
(
4𝑚𝑖

22
𝑚𝑖

22
+ 12𝑚𝑖

22
𝑚𝑖

32
+ 12𝑚𝑖

32
𝑚𝑖

32

)
Q𝑖−1 · Q𝑖−1

+
(
8𝑚𝑖

22
𝑚𝑖

23
+ 12𝑚𝑖

23
𝑚𝑖

32
+ 12𝑚𝑖

22
𝑚𝑖

33
+ 24𝑚𝑖

32
𝑚𝑖

33

)
Q𝑖−1 · Q𝑖

+
(
4𝑚𝑖

23
𝑚𝑖

23
+ 12𝑚𝑖

23
𝑚𝑖

33
+ 12𝑚𝑖

33
𝑚𝑖

33

)
Q𝑖 · Q𝑖

(22)

Denoting the coefficient of 𝑄𝑖− 𝑗 ·𝑄𝑖−𝑘 as 𝑐𝑖
𝑗,𝑘
, the strain energy function of B(𝑡) can be written

as follows

𝐸𝐺 (B(𝑡)) =
𝑛∑︁
𝑖=3

3∑︁
𝑗=0

𝑗∑︁
𝑘=0

𝑐𝑖
𝑗,𝑘
Q𝑖− 𝑗 · Q𝑖−𝑘 (23)

Eq. (22) is the discrete expression of the BBSC strain energy function about the control balls and

the knot vector.
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6 BLENDING OF BALL B-SPLINE CURVE
In this section, we will introduce the specific method for solving blending curves. First, we will

introduce how the control balls of the blending curve is constrained by the continuity conditions.

Secondly, we will present the specific optimization process for the BBSC strain energy function.

Finally, we will give the general algorithmic flow of BBSC blending problem. We use C1 (𝑡),C2 (𝑡)
to denote the original BBSCs, and B(𝑡) to denote the blending BBSC.

6.1 Continuity Conditions
In the BBSC blending task, the blending BBSC needs to satisfy 𝐺2

continuous conditions with

the original BBSCs at the junction. Naturally, we translate the constraints for blending BBSC into

constraints for the control balls.

We use the BBSC matrix expression of Equation(16) to convert B(𝑡) into the form of control

balls expression. The specific expressions of the first three control balls of blending BBSC and the

last three control balls with respect to the 𝐺2
continuous degree of freedom parameters can be

obtained as follows



Q0 = C1 (1)
Q1 = 𝛼1

(𝑡𝑘−𝑡1 )
3

C′
1
(1) + C1 (1)

Q2 = 𝛼2

1

(𝑡𝑘−𝑡2 ) (𝑡𝑘+1−𝑡2 )
6

C′′
1
(1) + 𝛼1

𝑡𝑘+1+𝑡𝑘−𝑡2−𝑡1
3

C′
1
(1) + 𝛽1

(𝑡𝑘−𝑡2 ) (𝑡𝑘+1−𝑡2 )
6

C′
1
(1) + C1 (1)

Q𝑛−2 = 𝛼2

2

(𝑡𝑛+2−𝑡𝑛 ) (𝑡𝑛+2−𝑡𝑛−1 )
6

C′′
2
(0) + 𝛼2

𝑡𝑛+𝑡𝑛+1−𝑡𝑛+3−𝑡𝑛+2
3

C′
2
(1) + 𝛽2

(𝑡𝑛+2−𝑡𝑛 ) (𝑡𝑛+2−𝑡𝑛−1 )
6

C′
2
(0) + C2 (0)

Q𝑛−1 = 𝛼2
(𝑡𝑛−𝑡𝑛+3 )

3
C′
2
(0) + C2 (0)

Q𝑛 = C2 (0)
(24)

6.2 Two-Step Optimization Process
The optimization method is divided into two main steps: preprocessing and constrained optimiza-

tion based on the trust region. In the preprocessing section, we transform the BBSC strain energy

function from the form based on the control balls expression to the form based on the continuity

condition parameters by the continuity conditions of BBSCs and the control balls optimality condi-

tion. In the constrained optimization section, we introduce the trust-region-reflection algorithm

and give the specific form of the optimization problem with the constraint conditions.

6.2.1 Preprocess Solving. When 𝑛 = 5, the blending curve has 6 control balls, all control balls

can be transformed into expressions of by the continuity condition parameters. To obtain the

optimal BBSC control balls for the blending curve, we need only to optimally solve for 4 parameters

𝛼1, 𝛼2, 𝛽1, 𝛽2 and then bring parameters into the control ball expression.

Note that in the optimization process, it is necessary to ensure that the control ball radius is

greater than 0, 𝛼1 and 𝛼2 are not less than 0. The optimization problem is expressed as follows:

min 𝐸𝐺B(𝑡 ) (𝛼1, 𝛽1, 𝛼2, 𝛽2)
s.t. −

(
𝑎𝑖𝛼

2

1
+ 𝑏𝑖𝛼1 + 𝑐𝑖𝛽1 + 𝑑𝑖 − 𝜖

)
≤ 0, 𝑖 = 1, 2

−
(
𝑎𝑖𝛼

2

2
+ 𝑏𝑖𝛼2 + 𝑐𝑖𝛽2 + 𝑑𝑖 − 𝜖

)
≤ 0, 𝑖 = 𝑛 − 2, 𝑛 − 1

𝛼1 ≥ 0, 𝛼2 ≥ 0

(25)
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When 𝑛 > 5, the blending BBSC has more than 6 control balls, where 𝑄3 𝑄𝑛−3 are not controlled
by the continuity constraint. In this case, the optimization problem is expressed as follows:

min 𝐸𝐺B(𝑡 ) (𝛼1, 𝛽1, 𝛼2, 𝛽2,Q3, . . . ,Q𝑛−3)
s.t. −

(
𝑎𝑖𝛼

2

1
+ 𝑏𝑖𝛼1 + 𝑐𝑖𝛽1 + 𝑑𝑖 − 𝜖

)
≤ 0, 𝑖 = 1, 2

−
(
𝑎𝑖𝛼

2

2
+ 𝑏𝑖𝛼2 + 𝑐𝑖𝛽2 + 𝑑𝑖 − 𝜖

)
≤ 0, 𝑖 = 𝑛 − 2, 𝑛 − 1

𝛼1 ≥ 0, 𝛼2 ≥ 0

(26)

Considering that as the number of BBSC segments increases, i.e., 𝑛 increases, more and more

control balls need to be optimized, making the optimization problem difficult due to too many

optimization parameters. We first optimize the control balls by transforming them into the expres-

sion about the continuity parameter to reduce the number of parameters to be optimized, thus

simplifying the optimization problem.

𝜕𝐸𝐺B(𝑡 )
𝜕Q𝑖

= 0, 𝑖 = 3, . . . , 𝑛 − 3 (27)

After transforming all control balls into the expression based on 𝛼1, 𝛼2, 𝛽1, 𝛽2, the strain energy

function of BBSC can be written in the following form:

𝐸𝐺B (𝑡) (𝛼1, 𝛼2, 𝛽1, 𝛽2)
= 𝜆0𝛼

4

1
+ 𝜆1𝛼

3

1
+ 𝜆2𝛼

2

1
+ 𝜆3𝛼1

+𝜆4𝛼4

2
+ 𝜆5𝛼

3

2
+ 𝜆6𝛼

2

2
+ 𝜆7𝛼2

+𝜆8𝛼2

1
𝛼2

2
+ 𝜆9𝛼

2

1
𝛼2 + 𝜆10𝛼1𝛼

2

2
+ 𝜆11𝛼1𝛼2

+𝜆12𝛼2

1
𝛽1 + 𝜆13𝛼1𝛽1 + 𝜆14𝛼

2

2
𝛽1 + 𝜆15𝛼2𝛽1

+𝜆16𝛼2

1
𝛽2 + 𝜆17𝛼1𝛽2 + 𝜆18𝛼

2

2
𝛽2 + 𝜆19𝛼2𝛽2

+𝜆20𝛽21 + 𝜆21𝛽
2

2
+ 𝜆22𝛽1𝛽2 + 𝜆23𝛽1 + 𝜆24𝛽2 + 𝜆25

(28)

Next, we describe how to determine the coefficients 𝜆𝑖 (𝑖 = 0, ..., 25). All of the control balls of
B(𝑡) can be expressed by 𝛼1, 𝛼2, 𝛽1, 𝛽2 in the following form:

Q𝑖 = A𝑖𝛼
2

1
+ B𝑖𝛼

2

2
+ C𝑖𝛼1 + D𝑖𝛼2 + E𝑖𝛽1 + F𝑖𝛽2 + G𝑖 (29)

where A𝑖 ,B𝑖 ,C𝑖 ,D𝑖 ,E𝑖 , F𝑖 ,G𝑖 are all four-dimensional vectors. Q𝑖 can be written as a vector:

(A𝑖 B𝑖 C𝑖 D𝑖 E𝑖 F𝑖 G𝑖 ) · (𝛼2

1
𝛼2

2
𝛼1 𝛼2 𝛽1 𝛽2 1)T (30)

Thus, when we find the dot product for any two control balls Q𝑖 and Q𝑗 , we have the following

result:

Q𝑖 · Q𝑗 =

+A𝑖 · A𝑗𝛼
4

1
+
(
A𝑖 · C𝑗 + C𝑖 · A𝑗

)
𝛼3

1

+
(
A𝑖 · G𝑗 + G𝑖 · A𝑗 + C𝑖 · C𝑗

)
𝛼2

1

+B𝑖 · B𝑗𝛼
4

2
+
(
B𝑖 · D𝑗 + D𝑖 · B𝑗

)
𝛼3

2

+
(
B𝑖 · G𝑗 + G𝑖 · B𝑗 + D𝑖 · D𝑗

)
𝛼2

2

+
(
C𝑖 · G𝑗 + G𝑖 · C𝑗

)
𝛼1 +

(
D𝑖 · G𝑗 + G𝑖 · D𝑗

)
𝛼2

+
(
A𝑖 · B𝑗 + B𝑖 · A𝑗

)
𝛼2

1
𝛼2

2
+
(
A𝑖 · D𝑗 + D𝑖 · A𝑗

)
𝛼2

1
𝛼2

+
(
C𝑖 · B𝑗 + B𝑖 · C𝑗

)
𝛼1𝛼

2

2
+
(
C𝑖 · D𝑗 + D𝑖 · C𝑗

)
𝛼1𝛼2

+
(
A𝑖 · E𝑗 + E𝑖 · A𝑗

)
𝛼2

1
𝛽1 +

(
C𝑖 · E𝑗 + E𝑖 · C𝑗

)
𝛼1𝛽1

+
(
B𝑖 · E𝑗 + E𝑖 · B𝑗

)
𝛼2

2
𝛽1 +

(
D𝑖 · E𝑗 + E𝑖 · D𝑗

)
𝛼2𝛽1

+
(
A𝑖 · F𝑗 + F𝑖 · A𝑗

)
𝛼2

1
𝛽2 +

(
C𝑖 · F𝑗 + F𝑖 · C𝑗

)
𝛼1𝛽2

+
(
B𝑖 · F𝑗 + F𝑖 · B𝑗

)
𝛼2

2
𝛽2 +

(
D𝑖 · F𝑗 + F𝑖 · D𝑗

)
𝛼2𝛽2

+E𝑖 · E𝑗𝛽
2

1
+ F𝑖 · F𝑗𝛽22 +

(
E𝑖 · G𝑗 + G𝑖 · E𝑗

)
𝛽1

+
(
F𝑖 · G𝑗 + G𝑖 · F𝑗

)
𝛽2 +

(
F𝑖 · E𝑗 + E𝑖 · F𝑗

)
𝛽1𝛽2

+G𝑖 · G𝑗

(31)
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Combining Equations (28) and (31), the specific form of each coefficient 𝜆 in Equation (28) can

be obtained.

6.2.2 Constrained Optimization. In the previous subsection, we obtained the expression form of

the BBSC strain energy function with 𝛼1, 𝛼2, 𝛽1, 𝛽2. Its specific form is Equation (28).

When optimizing the strain energy function, it is important to note that the radius of the control

ball in BBSCmust be positive. Therefore, we need to perform a constrained optimization of the strain

energy function with the constraint that the control ball radius is greater than 0. Our optimization

problem can be expressed in the following form:

min 𝐸𝐺B(𝑡 ) (𝛼1, 𝛽1, 𝛼2, 𝛽2)
s.t. −

(
𝑎𝑖𝛼

2

1
+ 𝑏𝑖𝛼1 + 𝑐𝑖𝛽1 + 𝑑𝑖 − 𝜖

)
≤ 0, 𝑖 = 1, 2

−
(
𝑎𝑖𝛼

2

2
+ 𝑏𝑖𝛼2 + 𝑐𝑖𝛽2 + 𝑑𝑖 − 𝜖

)
≤ 0, 𝑖 = 𝑛 − 2, 𝑛 − 1

𝛼1 ≥ 0, 𝛼2 ≥ 0

(32)

Specifically, we perform constrained optimization of the strain energy function in MATLAB.We

use fmincon in Optimization Toolbox.

6.3 Algorithm Process
In this section, we describe the whole algorithm process. We start from the minimum number of

control balls required for the blending curve, i.e., 𝑛 = 6, and keep increasing the number of control

balls until the strain energy of the curve no longer decreases at a certain number of control balls,

at which point the blending curve is taken as the optimized result. We decribe the algorithm flow

in detail in Algorithm 1.

As the number of control balls increases, the knot vector of ball B-Spline curves also changes.

We use the knot vectors of quasi-uniform B-Spline curves as the knot vectors of blending curves. It

is constructed as

{0, . . . , 0︸  ︷︷  ︸
𝑘

, 𝑡𝑘 , . . . , 𝑡𝑛, 1, . . . , 1︸  ︷︷  ︸
𝑘

} (33)

𝑡𝑖 =
𝑖 − 𝑘 + 1

𝑛 − 𝑘 + 2

(34)

7 EXPERIMENTS
In this section, we conduct experiments to demonstrate our approach. First, we mainly compare

with Jiang’s method to show that our method can obtain blending BBSC with better fairness.

Second, we use our method to fill in the missing vessel Branches data to show the performance of

our method in practical applications.

In terms of evaluation metrics for the comparison experiments, in addition to strain energy,

we also compared the winding number. Strain energy and winding number are commonly used

evaluation metrics in previous studies. In our work, strain energy is the optimization target. winding

number describes the angular change of the curve tangent as it moves along the curve. For a planar

curve 𝑐 (𝑡) with curvature 𝑘 (𝑡), its winding number𝑊 can be calculated as

𝑊 =
1

2𝜋

∫
1

0

|𝑘 (𝑡) | ∥𝑐′ (𝑡)∥ 𝑑𝑡 (35)

7.1 Blending of the Generated BBSCs
In the experiments of this section, we still use the strain energy of BBSC and the winding number

of the skeleton line as evaluation metrics. Then our algorithm is compared experimentally with

Jiang’s method[Jiang et al. 2014].
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12 Zhao et al.

Algorithm 1 BBSC Blending Algorithm

Require: 2 BBSCs C1 (𝑡) and C2 (𝑡)
Ensure: A blending BBSC B(𝑡) with minimum strain energy

1: Initialize:𝑛 = 5, 𝐸𝐺𝑚𝑖𝑛 = +∞
2: loop
3: Determine the knot vector of the blending curve according to 𝑛

4: Express the control balls Q𝑖 (𝑖 = 0, 1, 2, 𝑛 − 2, 𝑛 − 1, 𝑛) as an expression shaped like (30)

according to equation (24)

5: Solve the equation (27) to express the control ballsQ𝑖 (𝑖 = 3, ..., 𝑛−3) as an expression shaped

like (30)

6: Determine the objective function according to equation (28)

7: Minimize the energy function using fmincon in Optimization Toolbox
8: Substitute the optimal 𝛼1, 𝛼2, 𝛽1, 𝛽2 into the expression of the control balls

9: Calculate the strain energy according to equation (23)

10: if 𝐸𝐺𝑚𝑖𝑛 > 𝐸𝐺 then
11: Build the B(𝑡) according to the knot vector and control balls

12: 𝐸𝐺𝑚𝑖𝑛 = 𝐸𝐺,𝑛 = 𝑛 + 1

13: else
14: The last B(𝑡) is the result BBSC
15: break loop
16: end if
17: end loop

(a) Skeletons of input BBSCs. (b) Input BBSCs.

Fig. 4. Input of BBSC blending.

Table 1. Numerical comparison of blending generated BBSCs.

Metrics Jiang et al.[Jiang et al. 2014] 3 segments.(Ours) 4 segments.(Ours)

strain energy 59644.50 36318.71 34561.00

winding number 0.359 0.357 0.347

In the above experiments, we can find that the BBSC obtained by our method has smaller strain

energy and winding number compared with Jiang’s method[Jiang et al. 2014]. in addition, we find

that the stain energy and winding number of BBSC become smaller as the number of segments

increases. This indicates that increasing the number of BBSC segments and increasing the solution

space lead to better fairness of the obtained BBSC.
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(a) Jiang et al. (b) 3 segments. (c) 4 segment.

Fig. 5. Comparison of Jiang’s method to our one using 3 and 4 segments. Jiang’s algorithm introduces visible
𝐺2 continuity, we obtain a smoother solution with better fairness.

Table 2. Numerical comparison of examples of blending BBSCs.

Examples.

strain energy winding number

Jiang et al.[Jiang et al. 2014] Ours. Jiang et al.[Jiang et al. 2014] Ours.

Example 1. 4534.75 1914.72 0.249 0.250

Example 2. 4244.48 2133.34 0.316 0.2501

Example 3. 8161.78 5694.90 0.304 0.304

Example 4. 4530.97 2912.06 0.410 0.412

We also performed comparative experiments on other samples. In Fig. 6, the first row shows the

original input data; the second row shows the experimental results obtained by Jiang’s method[Jiang

et al. 2014]; and the last row shows the experimental results given by our method. Table 2 shows

the numerical comparison results of Fig. 6. This result further verifies that our blending method is

able to obtain blending results with better fairness compared with other methods.

7.2 Blending of Vessel Branches
There is substantial evidence that the geometric features of vessels have a strong influence on

hemodynamics[Del et al. 2015] and consequently on the development of vascular diseases, such as

atherosclerosis, cerebral aneurysmal disease, etc[Piccinelli et al. 2009; Yonezawa et al. 2002]. The

geometric features of vessels are based on their geometric models. However, due to the limitations

of segmentation algorithms[Florez-Valencia et al. 2010; Wen et al. 2015], complete volume data are

often difficult to obtain, and the vascular models generated with these data often show various gaps.

In this section, we show that the modeling algorithm for BBSCs is useful in the field of medical

imaging. We first use the BBSC to model the cerebral vascular data obtained by MRA. Due to the

incompleteness of the original data, the obtained BBSC model has some residuals. We will use the

blending algorithm of the BBSC to repair this fragmented cerebral vascular model.

8 CONCLUSION
In this paper, a new BBSC blending algorithm is proposed. The method uses a ball B-Spline curve

to model the blending curve. Compared with the method of modeling blending curves using ball
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(a) Example 1. (b) Example 2. (c) Example 3. (d) Example 4.

Fig. 6. Comparison of Jiang’s method to our method on more examples. The first row shows the original
input data; the second row shows the experimental results obtained by Jiang’s method[Jiang et al. 2014]; and
the last row shows the experimental results given by our method. Our method obtain a smoother solution
with better fairness.

Fig. 7. Examples of vessel branches repairing.

Table 3. Numerical comparison of examples of vessel branches repairing.

Vessel Branch Number of Segments

metrics

time

strain energy winding number

ICA-L2

3 1675.04 0.27 22.67ms

4 1490.67 0.25 36.12ms

ACA-L1

3 372.71 0.19 36.97ms

4 368.25 0.19 44.14ms
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Fig. 8. Examples of vessel branches repairing.

Bézier curves, our method provides more degrees of freedom and expands the solution space to

obtain blending BBSCs with better smoothness.

In addition, we consider both the skeleton line and radius of the BBSC, and treat the control ball

as a point in the four-dimensional space. Compared with considering the skeleton line and radius

of BBSC separately, our method can find the skeleton line and radius of the optimal blending BBSC

in the same space, keeping the consistency of both.

In terms of computation, in order to avoid the problem of too large amount of parameters due to

expanding the solution space, we propose a two-step optimization process that limits the number

of optimization parameters to 4, thus keeping our method real-time.

Finally, we experimentally demonstrate the superiority of our method: increasing the degrees of

freedom and expanding the solution space has a significant effect on obtaining a better blending

BBSC; at the same time, considering the skeleton line and radius of BBSC can keep the consistency

of both well, thus obtaining a blending BBSC with better smoothness; the method has a good

computational performance and can keep real-time during the computation.
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